بررسی قابلیت شاخص‌های بیوفیزیک ماهواره‌ای اجزای تعادل انرژی و تبخیر و تعرق واقعی در ارزیابی تغییرات رطوبتی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت و کنترل بیابان، دانشکدۀ منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران.

2 استادیار گروه مدیریت مناطق خشک و بیابانی، دانشکدۀ منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران.

10.22034/jdmal.2021.243142

چکیده

رطوبت خاک سطحی یکی از متغیرهای مهم در فرآیندهای هیدرولوژیک است که بر تبادل جریان آب و انرژی بین سطح زمین و جو تأثیر می گذارد. برآورد دقیق تغییرات مکانی و زمانی رطوبت خاک برای بررسی­‌های مختلف محیطی بسیار مهم است. پیشرفت­‌های اخیر فنآوری در سنجش از دور ماهواره‌­ای نشان داده است که رطوبت خاک با انواع روش­‌های سنجش از دور قابل اندازه­‌گیری است. هدف از پژوهش حاضر، برآورد شاخص­‌های بیوفیزیک و تبخیر و تعرق با استفاده از خوارزمیک سبال (SEBAL) و ارائه شاخص رطوبت خاک با استفاده از روش رگرسیون مولفه اصلی در اراضی شرق دریاچه بختگان، استان فارس است. به همین منظور پنج تصویر ماهواره لندست 8 مربوط به ماه‌های فروردین، اردیبهشت، خرداد و تیر سال 1396 شمسی انتخاب و تصحیح­‌های اولیه بر روی تصاویر، انجام شد. برای اجرای خوارزمیک سبال از داده‌های هواشناسی ایستگاه همدیدی مرودشت استفاده شد. با بهره­‌گیری از شاخص‌­های بیوفیزیک همانند آلبیدو، شار تابش خالص، شار گرمای خاک، تبخیر و تعرق، شاخص نرمال شده پوشش گیاهی و دمای سطح زمین به روش رگرسیون مولفه اصلی شاخص رطوبت خاک، مدل­‌سازی شد. برای صحت ­سنجی مدل از شاخص TVDI استفاده شد. ضریب R2 و شاخص F مدل برابر با 0/966 و 1651581/9 است که نشان دهندۀ دقت زیاد مدل برای برآورد شاخص رطوبت خاک در هر پیکسل در مناطق مختلف با شرایط مختلف و پوشش گیاهی متنوع است. نتایج نشان داد که برای برآورد دقیق­تر مقدار رطوبت خاک افزون بر دما و پوشش گیاهی، دیگر شاخص‌­های بیوفیزیک موثر بر مقدار رطوبت خاک سطحی می بایست در نظر گرفته­ شود.

کلیدواژه‌ها


  1. Ahmad, M.D., Biggs, T., Turral, H. & Scott, C.A. (2006). Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India. Water Science and Technology, 53(10), 83-90.
  2. Allen, R .,Tasumi, M., Trezza, R. & Bastiaanssen, W. (2002). SEBAL (Surface Energy Balance Algorithms for Land). Advanced Training and Users Manual.
  3. Allen, R.G., Tasumi, M., Morse, A. & Trezza, R. (2005). A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation and Drainage systems, 19(3-4), 251-268.
  4. Allen, R.G., Tasumi, M. & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering, 133(4),380-394.
  5. Bastiaanssen, W., Noordman, E.,  Pelgrum, H., Davids, G., Thoreson, B.  & Allen, R. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of irrigation and drainage engineering, 131(1), 85-93.
  6. Bastiaanssen, W.G. & Bos, M. (1999). Irrigation performance indicators based on remotely sensed data: a review of literature. Irrigation and drainage systems, 13(4), 291-311.
  7. Bastiaanssen, W.G., Pelgrum, H. Wang, J., Ma, Y., Moreno, J., Roerink, G. & Van der Wal, T. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212.
  8. Bastiaanssen, W.G., Ahmad, M. D. & Chemin, Y. (2002). Satellite surveillance of evaporative depletion across the Indus Basin. Water Resources Research, 38(12), 9-1-9-9.
  9. Bastiaanssen, W.G. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of hydrology, 229(1-2), 87-100.
  10. Batra, N., Islam, S.,Venturini, V., Bisht, G. & Jiang, L. (2006). Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains. Remote Sensing of Environment, 103(1), 1-15.
  11. Chemin, Y. & Alexandridis, T. (2001). Improving spatial resolution of ET seasonal for irrigated rice in Zhanghe, China. Paper presented at the 22nd Asian Conference on Remote Sensing, 5(1), 3-11.
  12. Di Bella, C., Rebella, C. & Paruelo, J.M. (2000). Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina. International Journal of Remote Sensing, 21(4), 791-797.
  13. Du, J., Song, K., Wang, Z., Zhang, B. & Liu, D. (2013). Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China. Chinese geographical science,  23(1), 73-91.
  14. Fatras, C., Frappart, F., Mougin, E., Grippa, M. & Hiernaux, P. (2012). Estimating surface soil moisture over Sahel using ENVISAT radar altimetry. Remote sensing of environment, 1(23), 496-507.
  15. Gillies, R.R. & Carlson, T.N. (1995). Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology, 34(4), 745-756.
  16. Goetz, S. (1997). Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of remote sensing, 18(1), 71-94.
  17. Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O. & Van der Tol, C. (2012). Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sensing of Environment, 121, 261-274.
  18. Goward, S.N., Xue, Y. & Czajkowski, K.P.  (2002). Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote sensing of environment, 79(2-3), 225-242.
  19. Granger, R. (2010). A feedback Approach for the estimate of evapotranspiration using remotely-sensed data. in Second International Workshop on Application of Remote Sensing in Hydrology.
  20. Hafeez, M., Chemin, Y., Van De Giesen, N. & Bouman, B. (2002). Field evapotranspiration estimation in central luzon, philippines using different sensors: Landsat 7 etm+, terra modis and aster. in ISPRS/CIG conference JulyCiteseer.
  21. Han, Y., Wang, Y. & Zhao, Y. (2010). Estimating soil moisture conditions of the greater Changbai Mountains by land surface temperature and NDVI. IEEE Transactions on Geoscience and Remote Sensing, 48(6), 2509-2515.
  22. Holidi, H., Armanto, M.E., Damiri, N. & Putranto, D.A. (2019). Characteristics of Selected Peatland uses and Soil Moisture Based on TVDI. Journal of Ecological Engineering, 20(4), 194-200.
  23. Immerzeel, W., Gaur, A. & Zwart, S.J.  (2008). Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agricultural Water Management, 95(1), 11-24.
  24. Jabloun, M.d. & Sahli, A. (2008). Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia. Agricultural water management, 95(6), 707-715.
  25. Khanmohammadi, F., Homaee, M. & Noroozi, A.A. (2015). Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Soil and Water Resources Conservation, 4(2), 37-45. )in Farsi(
  26. Kustas, W.P. & Norman, J.M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 94(1), 13-29.
  27. Kustas, W.P., Choudhury, B.J., Moran, M.S., Reginato, R.J., Jackson, R.D., Gay, L.W. & Weaver, H.L. (1989). Determination of sensible heat flux over sparse canopy using thermal infrared data. Agricultural and Forest Meteorology, 44(3-4), 197-216.
  28. Lievens, H. & Verhoest, N.E. (2012). Spatial and temporal soil moisture estimation from RADARSAT-2 imagery over Flevoland, The Netherlands. Journal of hydrology, 456, 44-56.
  29. Lu, H., Koike, T., Yang, K., Hu, Z., Xu, X., Rasmy, M., Kuria, D. & Tamagawa, K. (2012). Improving land surface soil moisture and energy flux simulations over the Tibetan plateau by the assimilation of the microwave remote sensing data and the GCM output into a land surface model. International Journal of Applied Earth Observation and Geoinformation, 17, 43-54.
  30. Lunt, I., Hubbard, S. & Rubin, Y. (2005). Soil moisture content estimation using ground-penetrating radar reflection data. Journal of hydrology, 307(1-4), 254-269.
  31. Ma, Y.m., Menenti, M., Tsukamoto, O., Ishikawa, H., Wang, J.m. & Gao, Q.z. (2004). Remote sensing parameterization of regional land surface heat fluxes over arid area in northwestern China. Journal of arid environments, 57(2), 257-273.
  32. Mallick, K., Bhattacharya, B., Chaurasia, S., Dutta, S., Nigam, R., Mukherjee, J., Banerjee, S., Kar, G., Rao, V.  & Gadgil, A. (2007). Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India. International Journal of Remote Sensing, 28(10), 2091-2110.
  33. Mehrabi, m., Hamzeh, S., Alavipanah, S. K., Kiavarz, M. & Ziaee, R. (2019).  Estimating soil moisture using remotely sensed data and surface energy balance system. Watershed Engineering and Management, 11(3), 759-770. )in Farsi(
  34. Menard, S. )2002(. Applied logistic regression analysis, Sage.
  35. Menenti, M. & Choudhury, B. (1993). Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range. Exchange processes at the land surface for a range of space and time scales, 212, 561-568.
  36. Moosavi, V., Talebi, A., Mokhtari, M.H. & Hadian, M.R. (2016). Estimation of spatially enhanced soil moisture combining remote sensing and artificial intelligence approaches. International journal of remote sensing, 37(2), 5605-5631.
  37. Peters, A.J., Rundquist, D.C. & Wilhite, D.A. (1988). Satellite detection of the geographic core of the 1988 Nebraska drought. Agricultural and Forest Meteorology, 57(1-3), 35-47.
  38. Price, J.C. (1990). Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE transactions on Geoscience and Remote Sensing, 28(5), 940-948.
  39. Sandholt, I., Rasmussen, K. & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of environment, 79(2-3), 213-224.
  40. Sadeghzade Poode, R., Zare, M., Mokhtari, M.H. & Ghalibaf, M.A. (2015).  Assessment of Surface Energy Balance Algorithm for Land (SEBAL) model and biophysical parameters derived from remotely- sensed data in estimating of soil moisture in arid lands (Case study: Jarghoye, Isfahan). Desert Management, 3(6), 90-107. )in Farsi(
  41. Stisen, S., Sandholt, I. & Fensholt, R. (2004).  Meteosat Second Generation Data for Assessment of Surface Moisture Status. in Proceedings of the Second MSG RAO Workshop. Salzburg, Austria.
  42. Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and earth system sciences, 6(1), 85-100.
  43. Tasumi, M., Trezza, R., Allen, R. & Wright, J. (2003). US Validation Tests on the SEBAL Model for. Evapotranspiration via Satellite.
  44. Tasumi, M. (2000). Application of the SEBAL methodology for estimating consumptive use of water and stream flow depletion in the Bear River Basin of Idaho through remote sensing. Appendix C: a step-by-step guide to running SEBAL.
  45. Wang, X., Xie, H., Guan, H. & Zhou X. (2007) Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. Journal of hydrology, 340(1-2), 12-24.
  46. Western, A.W. & Grayson, R.B. (1998). The Tarrawarra data set: Soil moisture patterns, soil characteristics, and hydrological flux measurements. Water Resources Research, 34(10), 2765-2768.
  47. Yin, Z., Lei, T., Yan, Q., Chen, Z. & Dong, Y. (2013). A near-infrared reflectance sensor for soil surface moisture measurement. Computers and electronics in agriculture, 99(1), 101-107.