ارزیابی قابلیت داده‌های سنجش از دور در تهیه نقشه فرسایش بادی استان اصفهان با استفاده از مدل IRIFR

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد بیابان زدایی، دانشکدۀ منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران.

2 دانشیار دانشکدة منابع طبیعی، دانشگاه صنعتی اصفهان،ایران

10.22034/jdmal.2021.244522

چکیده

فرسایش بادی و مدیریت آن همواره یکی از مباحث مهم مناطق خشک بوده است. بنابراین ، پژوهش حاضر با هدف ارزیابی قابلیت داده‌­های سنجش از دور در پهنه‌بندی این فرآیند بر اساس عوامل فرسایش بادی مدل IRIFR در استان پهناور اصفهان انجام شد. به این منظور عامل­‌های مختلف شامل پستی و بلندی زمین، سرعت باد، دشت ریگی، پوشش‌­گیاهی، رطوبت خاک، پراکنش نهشته­‌های بادی، کاربری و مدیریت اراضی از تصاویر ماهواره‌ای مودیس، لندست و مدل رقومی ارتفاع شاتل فضایی استخراج و با استفاده از منطق فازی تلفیق شد. سپس، صحت نقشه فرسایش بادی به‌­دست آمده توسط نقشه فرسایش بادی موجود با استفاده از 200 نقطه تصادفی و ماتریس خطا ارزیابی شد. نتایج نشان داد که فرسایش بادی، بیشتر در شهرستان‌‌های نایین، آران و بیدگل، اردستان و اصفهان غالب است. مطابق نقشۀ فرسایش بادی تولید شده در این پژوهش، کلاس‌های کم 26.3%، متوسط 56.9%، زیاد 11.8% و خیلی‌زیاد 5% از سطح منطقه مطالعاتی را تشکیل داده است. صحت کلی 73% نقشه تولید شده و نقشه زمینی موجود در منطقه مطالعاتی، مبین کارآیی مناسب داده­‌های سنجش از دور در پهنه بندی فرسایش بادی است. بنابراین، با توجه به مزایای فراوان این داده‌­ها می‌­توان از روش ارائه شده برای پهنه‎‌بندی و گزارش دهی وضعیت فرسایش بادی در مقیاس‌های مختلف مکانی و زمانی در بخش­‌های اجرایی استفاده کرد.

کلیدواژه‌ها


  1. Ahmadi, H. (2008). Applied geomorphology- desert (wind erosion). Tehran, Iran: Tehran University Press. (in Farsi)
  2. Alipour, A., Farzanehpey, F., Torabi, A., BakhshiniaS, & Mesbahzadeh, T. (2016). The severity of wind erosion assessment in Ala region of Semnan using IRIFR.E. A model. Desert Ecosystem Engineering Journal, 5 (10), 99- 107. (in Farsi)
  3. Amiri, F. & Arzani, H. (2010). Range management based on grazing capacity and vegetation index (case study: semi-arid ranges of Qarah Aqaj, Isfahan). Rangeland, 3, 680- 698. (in Farsi)
  4. Arbab, M., Pahlavanravi, A., PiriSahragard, H., & Amiri, M. (2018). Accuracy assessment of geo-statistics and artificial veural networks methods to estimate threshold wind velocity: A case of Jazinak region, Sistan plain. Environmental Erosion Researches, 8 (3), 87- 105. (in Farsi)
  5. BDA. (2011). Hotspots of wind erosion, Bureau of Desert Affairs, Isfahan’s Watershed and Natural Resources Administration, CD-ROM, Isfahan, Iran. (in Farsi)
  6. Boali, A., Jafari, R., & Bashari, H. (2018). Wind erosion estimation and assessment using Bayesian belief networks in eastern Isfahan township. Desert Ecosystem Engineering Journal, 6 (14), 45- 58. (in Farsi)
  7. Breshears, D.D., Whicker, J.J., Johansen, M.P., & Pinder, J.E. (2003). Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems: quantifying dominance of horizontal wind-driven transport. Earth Surface Processes and Landforms, 28 (11), 1189-1209.
  8. Cerdà, A. (1998). The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78 (2), 321- 330.
  9. Chappell, A., Webb, N.P., Guerschman, J.P., Thomas, D.T., Mata, G., Handcock, R.N., Leys, J.F., & Butler, H.J. (2018). Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment, 204, 756- 768.
  10. Ebrahimikhusfi, Z. (2019). Analysis of the effect of wind speed and soil moisture on horizontal visibility variations caused by dust event in arid regions (study region: southeast of Iran). Desert Ecosystem Engineering Journal, 8 (24), 109- 121. (in Farsi)
  11. Ekhtesasi, M.R. & Zare Chahouki, A. (2016). Wind erosion values of IRIFER Model and wind erosion meter comparison (Case study: Segzi plain in Esfahan province). Range and Desert Research, 23 (2), 255- 264. (in Farsi)
  12. Ekhtesasi, M.R., Ahmadi, A., Bghestani, N., & Feiznia, S. (1997). Qualitative and quantitative investigation of wind erosion and estimating its sedimentary rate (case study: Yazd- Ardakan plain). natural resources, 50 (2), 5- 13. (in Farsi)
  13. Habibi, H. (2015). Estimating potential sediment yield in Shadegan catchment using IRIFER and hierarchical models. Geographical Research30, 171- 184
  14. Howari, F.M., Baghdady, A., & Goodell, P.C. (2007). Mineralogical and gemorphological characterization of sand dunes in the eastern part of United Arab Emirates using orbital remote sensing integrated with field investigations. Geomorphology, 83 (1), 67- 81.
  15. Jafari, R. & Bakhshandemehr, L. (2009). Identification and mapping environmental sensitive areas to desertification crisis in Isfahan province, part of integrated project of crisis management of Isfahan province, Project No. 177124/44/20, Isfahan, Iran. (in Farsi)
  16. Jafari, R. & Bakhshandehmehr, L. (2016). Quantitative mapping and assessment of environmentally sensitive areas to desertification in central Iran. Land Degradation & Development, 27 (2), 108- 119.
  17. Jafari, R., Bashari, H., & Tarkesh, M. (2017). Discriminating and monitoring rangeland condition classes with MODIS NDVI and EVI indices in Iranian arid and semi-arid lands. Arid Land Research and Management, 31 (1), 94- 110.
  18. Jarrah, M., Mayel, S., Tatarko, J., Funk, R., & Kuka, K. (2020). A review of wind erosion models: Data requirements, processes, and validity. CATENA, 187, 104388.
  19. Jebali, A., Jafari, R., Khajaldin, S.J., & Pakzad, H.R. (2014). Detection of aeolian sand sediments using a new satellite ratioing index. Soil and Water Research,  45 (2), 189- 197. (in Farsi)
  20. Khalife, E., Kavianpour, M., Pakparvar, M., & Mottaghi, A. (2010). Application of geographical information systems and remote sensing in qualitative and quantitative assessment of wind erosion, Case study: Shoorjestan plain. Watershed Engineering and Management2 (1), 44-56.
  21. Kim, D., Chin, M., Bian, H., Tan, Q., Brown, M.E., Zheng, T., You, R., Diehl, T., Ginoux, P., & Kucsera, T. (2013). The effect of the dynamic surface bareness on dust source function, emission, and distribution. Geophysical Research: Atmospheres, 118 (2), 871- 886.
  22. Kouchami Sardo, I., Besalatpour, A.A., Bashari, H., Shirani, H., & Esfandiarpour Broujeni, I. (2017). Assessment of IRIFR model capability in simulation of soil loss in different wind geomorphology landforms using wind erosion meter.  Arid Biome, 7 (1), 13- 25. (in Farsi)
  23. Liu, Q., Liu, G., & Huang, C. (2018). Monitoring desertification processes in Mongolian plateau using MODIS tasseled cap transformation and TGSI time series. Arid Land, 10 (1), 12- 26.
  24. Mahmoudabadi, M. & Zamani, S. (2012). Effect of wind speed and soil particle size distribution on sediment transport mechanisms due to wind erosion. Watershed Engineering and Management, 3 (3), 141- 151. (in Farsi)
  25. Mahmuodabadi, M. (2017). Study on the effect of initial soil moisture content on wind erosion rate using a laboratory wind tunnel. Water and Soil Conservation, 24 (2), 167- 183. (in Farsi)
  26. Mandakh, N., Tsogtbaatar, J., Dash, D., & Khudulmur, S. (2016). Spatial assessment of soil wind erosion using WEQ approach in Mongolia. Geographical Sciences, 26 (4), 473- 483.
  27. McCoy, R.M. (2005). Field methods in remote sensing. New York, Guilford Press.
  28. Melesse, A.M., Weng, Q., Thenkabail, P.S., & Senay, G.B. (2007). Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors, 7 (12), 3209- 3241.
  29. Middleton, N.J. (2017). Desert dust hazards: A global review. Aeolian Research, 24, 53- 63.
  30. Miri, A., Ahmadi, H., Ekhtesasi, M.R., Panjehkeh, N., & Ghanbari, A. (2009). Environmental and socio‐economic impacts of dust storms in Sistan region, Iran. Environmental Studies, 66 (3), 343- 355.
  31. Mousavi, S.H., Parizi, E., & Ahmadi, A. (2017). Modeling of wind deflation from desert pavement surface (case study: desert pavement of Bardsir). Geography and Environmental Planning, 28 (2), 21- 38. (in Farsi)
  32. NASA. (2016). Access NASA Earth Science Data, retrieved October 19, 2016, from https://earthdata.nasa.gov.
  33. Nikolakopoulos, K.G., Kamaratakis, E.K., & Chrysoulakis, N. (2006). SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. International Journal of Remote Sensing27 (21), 4819- 4838.
  34. Olfaghari, F. & Khosravi, H. (2015). Assessment of wind erosion intensity by IRIFR model case study: Jazinak, Sistan, Iran. Natural environment hazards, 4 (5), 27- 45. (in Farsi)
  35. Quan, B., Römkens, M.J.M., Li, R., Wang, F., & Chen, J. (2011). Effect of land use and land cover change on soil erosion and the spatio-temporal variation in Liupan Mountain region, southern Ningxia, China. Frontiers of Environmental Science & Engineering in China, 5 (4), 564- 572.
  36. Rayegani, B., Barati, S., Goshtasb, H., Gachpaz, S., Ramezani, J., & Sarkheil, H. (2020). Sand and dust storm sources identification: A remote sensing approach. Ecological Indicators, 112, 106099.
  37. Rigi, M., Farahi, M., & Saber, K. (2020). Estimation of the severity of wind erosion and its sinking potential using the Arifar model (IRIFR1) in the Rotak and Mak sookhteh Saravan area. Quarterly of Geography (Regional Planing), 10 (1), 449-464. (in Farsi)
  38. Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the surface temperature/ vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79 (2), 213- 224.
  39. Silakhori, E., Vahabzadeh, G., & Parisai, Z. (2017). Assessment of the risk for water and wind erosion and comparison of their sedimentation potential in Hares-Abad region in Sabzevar. Geography and Territorial Spatial Arrangement, 7, 89- 98. (in Farsi)
  40. Singh, R.B. (2019). A composite method to identify desertification ‘hotspots’ and ‘brightspots’. Land Degradation & Development, 30 (9), 1025-1039.
  41. Taghi Razavian, M. & Kooshki, F. (2012). Analysis of damage caused by the phenomenon of local dust (case study: the Sajzi plain of Isfahan), the 1st international congress on dust haze and combating its adverse effects, 15-17 February, 2012, Khouzestan Ramin Agriculture & Natural Resources University, Ahvaz, Iran. (in Farsi)
  42. WMO. (2005). Land use and land cover map, compact disk (CD), the Forest, Rangeland and Watershed Management Organization, Tehran, Iran.
  43. Wu, Z., Wang, M., Zhang, H., & Du, Z. (2019). Vegetation and soil wind erosion dynamics of sandstorm control programs in the agro-pastoral transitional zone of northern China. Frontiers of Earth Science, 13 (2), 430- 443.
  44. Yaghmaei, L., Soltani, S., & Khodagholi, M. (2009). Bioclimatic classification of Isfahan province using multivariate statistical methods. International Journal of Climatology, 29 (12), 1850- 1861.
  45. Yue, Y., Shi, P., Zou, X., Ye, X., Zhu, A.x., & Wang, J. a. (2015). The measurement of wind erosion through field survey and remote sensing: a case study of the Mu Us desert, China. Natural Hazards, 76 (3), 1497- 1514.
  46. Zehtabian, G., Shakerian, N., Azarnivand, H., & Khosravi, H. (2011). Hazard assessment of groundwater degradation using IMDPA model (case study: Isfahan province, Iran). ISPRS conference, geoInformation for disaster managemen, 1-6. (in Farsi)
  47. Zhang, C., Wang, Y., Jia, X., Shao, M.A., & An, Z. (2020). Impacts of shrub introduction on soil properties and implications for dryland revegetation. Science of the Total Environment, 742, 1-38.