شبیه‌سازی عددی توفان گردوغبار شدید کرمانشاه (مطالعه موردی: رخداد 4 تا 6 آبان 1397)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هواشناسی، گروه آب و هواشناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

2 دانش آموختة دکتری هواشناسی، پژوهشکدة هواشناسی و علوم جو، تهران، ایران

3 استاد آب و هواشناسی، گروه آب و هواشناسی، دانشکدة برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

4 کارشناسی ارشد آب و هواشناسی، گروه آب و هواشناسی، دانشکدة برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

چکیده

قرار گرفتن ایران در نواحی بیابانی موجب افزایش رخداد توفان‌­های گردوغبار در نواحی غربی ایران به­‌ویژه شهر کرمانشاه و تأثیر نامطلوب محیط زیستی شده­ است. از آن جایی که یکی از چشمه­‌های اصلی در گسیل ذرات معلق به جو، سطوح بیابانی است، مسائلی از قبیل توفان ماسه، غلظت زیاد ذرات گردوغبار و کاهش دید از مشکلات عمدۀ اقلیمی در کشور است. هدف این پژوهش، بررسی عملکرد مدل عددی میان ‌مقیاس هواشناسی- شیمی جو به نام مدل WRF-Chem در شبیه‌سازی غلظت گردوغبارِ شهر کرمانشاه است. با مقایسۀ غلظت گردوغبار و توزیع مکانی متغیرهای هواشناسی شبیه‌سازی شده توسط مدل و مقدارهای مشاهداتی ذرات PM10 در کرمانشاه، کارآیی مدل WRF-chem  ازریابی شد. نتایج حاصل از شبیه­‌سازی ذرات PM10 برای روزهای مورد بررسی، بیابان‌­های مرکزی و غربی عراق، بیابان های سوریه، کویت و شمال عربستان را به عنوان منبع اصلی برداشت ذرات گردوغبار نمایش داد. به دلیل همبستگی منطقی گسیل ذرات گردوغبار با متغیرهای دما و رطوبت­‌نسبی، برآورد مناسب آنها، در میزان دقت شبیه‌­سازی ذرات PM10 بسیار مؤثر است. با توجه به تحلیل­‌های صورت گرفته برای متغیرهای PM10، دما و رطوبت‌نسبی و نمودارهای ترسیم شده و مقایسه‌­های انجام شده، توافقی مطلوب بین مقادیر شبیه‌سازی شده و اندازه‌گیری شده PM10، دما و رطوبت‌­نسبی را نشان داد.

کلیدواژه‌ها


  1. Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S. & Shankar, U. (1998). Modal aerosol dynamics model for Europe: development and first applications. Atmospheric Environment, 32(17), 2981-
  2. Alizadeh, T., Rezaei Banafsheh, M., Goudarzi, G., & Sheikh Ghaderi, S.H. (2021). Detection and numerical simulation of dust storm in Kermanshah, Desert Management, 9(2), 1-14. (in Farsi)
  3. Alizadeh, T. (2014). Investigation of the role of climatic elements and pollutants in respiratory and heart diseases (Case study of Kermanshah), Master Thesis, Faculty of Planning and Environmental Sciences, Tabriz University. (in Farsi)
  4. Alizadeh, T., Rezaei Banafsheh, M., & Sharifi, R. (2021). Detection and simulation of dust storm in different levels of Kermanshah atmosphere using HYSPLIT and WRF-chem models, Environmental Science Studies, 6(4), 4266- 4279.
  5. Alizadeh Choobari, O., Zawar-Reza, P., & Sturman, A. (2014).  A global satellite view of the seasonal distribution of mineral dust and its correlation with atmospheric circulation.  Dynamics of Atmospheres and Oceans, 60, 20-34.
  6. Arjmand, M., Rashki, A.R., & Sargzi, H. (2018). Temporal and spatial monitoring of dust phenomenon using satellite data in southeastern Iran, with emphasis on Jazmourian region. Sepehr Geographical Information Quarterly, 27(106), 153-168. (in Farsi)
  7. Ashpole, I, Washington, R. (2013). A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking. Geophysical Research Atmospheres, 118(13), 6981-6995.
  8. Bian, H., Tie, X., Cao, J., Ying, Z., Han, S. & Xue, Y. (2011). Analysis of a severe dust storm event over China: application of the WRF-dust model. Aerosol and Air Quality Research, 11(4), 419-428.
  9. Binkowski, F. & Shankar, U. (1995). The Regional particulate matter model. 1. model description and preliminary results. Geophysical Research Atmospheres, 100(D12), 26191-
  10. Chang, W., Zhang, Y., Li, Z., Chen, J., & Li, K. (2021). Improving the sectional Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosols of the Weather Research and Forecasting-Chemistry (WRF-Chem) model with the revised Gridpoint Statistical Interpolation system and multi-wavelength aerosol optical measurements: the dust aerosol observation campaign at Kashi, near the Taklimakan Desert, northwestern China. Atmospheric Chemistry and Physics, 21, 4403-
  11. Csavina, J., Field, J., Félix, O, Corral-Avitia, A.Y., Sáez, A.E., & Betterton, E.A. (2014). Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Science of the Total Environment, 487(1), .82-90.
  12. Damizadeh, M., Mahdavi, A.A., Gholami, H., & Halisaz, A. (2021). Investigation of dust diffusion paths province using HYSPLIT model in Hormozgan, Iran. Watershed Engineering and Management, 13(2), 431-444. (in Farsi)
  13. Daryanoosh, M., Goudarzi, Gh.R., Rashidi, R., Keishams, F., Hopke, P.K., Mohammadi, M.J., Nourmoradi, H., Sicard, P., Takdastan, A., & Vosoughi, M. (2018). Risk of morbidity attributed to ambient PM10 in the western cities of Iran. Toxin Reviews, 37(4), 313-318.
  14. Faraji, M., Pourpak, Z., Naddafi, K., Nabizadeh, R., Nicknam, M.H., Shamsipour, M., Rezaei, S., Ghozikali, M.Gh., Ghanbarian, M., Mesdaghinia, R. (2018). Effects of airborne particulate matter (PM10) from dust storm and thermal inversion on global DNA methylation in human peripheral blood mononuclear cells (PBMCs) in vitro. Atmospheric Environment, 195, 170-178.
  15. Fouquart, Y., Bonnel, B., Brogniez, G., Buriez, J. C., Smith, l., & Morcrette, J.J. (1987). Observations of Saharan aerosols: Results of ECLATS field experiment. Part II: Broadband radiative Characteristics of the aerosols and vertical radiative Flux divergence. Applied Meteorology and Climatology, 26(1),38-
  16. Gautam, S., Patra, A.K., Sahu, S.P., & Hitch, M. (2018). Particulate matter pollution in opencast coal mining areas: a threat to human health and environment. Mining, Reclamation and Environment, 32(2), 75-92.
  17. Goudarzi, G., Heidari Farsani, M., Shirmardi, H., Maleki, H., Sorooshian, A., Babaei, A., (2018), Evaluation of the relationship between PM10 concentrations and heavy metals during normal and dusty days in Ahvaz, Iran. Aeolian Research 33, 12–22.
  18. Goudie, A.S. & Middleton, N.J. (2001). Saharan dust storms: nature and consequences. Earth-Science Reviews, 56(1-4), 179-204.
  19. Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C. & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment. 39(37), 6957-
  20. Heidari, M., Shirmardi, M., Alavi, N., Malehi, H., Sorooshian, A., Babaei, A., Asgharnia, H., Marzouni, , Goudarzi, Gh., (2018). Evaluation of the relationship between PM10 concentrations and heavy metals during normal and dusty days in Ahvaz, Aeolin Research, 33, 12-22.
  21. Hyslop, N. P. (2009). Impaired visibility: the air pollution people see. Atmospheric Environment, 43(1), 182-195.
  22. Karegar, l., Badagh Jamali, J., Ranjbar Saadatabadi, A., Moen Aldini, M., Goshtasb, H. (2016). Numerical simulation of sandstorms and severe dust in eastern Iran using WRF_Chem model. Spatial analysis of environmental hazards, 3(4), 110-119. (in Farsi)
  23. Lashkari, H., & Kikhosravi, GH. (2008). Synoptic statistical analysis of dust storms in Khorasan Razavi province in time interval (1993-1995). Natural Geography Studies, 40(65), 17-33. (in Farsi)
  24. Lu, M., Xinghua, Y., Tianliang, Z., Qing, H., Lua, H., Ali, M., Wen, H., Fan, Y., Chong, L. (2019). Modeling study on three- dimensional distribution of dust aerosols during a dust storm over the Tarim Basin, Northwest China. Atmospheric Research, 218, 285-295.
  25. Miri, M., Pilehvaran, R., Zand, M., & Nowruzi, A. A. (2021). Detection of dust nature using WRF-Chem model and remote sensing data (Case study: West and southwest of Iran). Soil and Water Resources Protection, 10(4), 81-94. (in Farsi)
  26. Miri, m., Azizi, Gh., & Shamsi pour, A.A. (2014). Identifying patterns of summer and winter atmospheric circulation of dust entering western Iran, Geography and environmental planning, 25(4), 203-220. (in Farsi)
  27. Modarres, R., & Sadeghi, Sh. (2018). Spatial and temporal trends of dust storms across desert regions of Iran. Natural Hazards, 90(1), 101-114. (in Farsi)
  28. Munir, S. (2016). Modelling the non-linear association of particulate matter (PM10) with meteorological parameters and other air pollutants-a case study in Makkah. Arabian Journal of Geosciences, 9(1), 1-13.
  29. Nikfal, A.H. (2014). Simulation of the density of PM10 particulates by the coupled WRF-Chem modeling system over the region of Iran. Proceedings of the 16th Iranian Geophysical Conference, 77-81. (in Farsi)
  30. Nikfal, A.H., Karami, S., Ranjbar Saadatabadi, A., & Sehatkashani, S. (2017). Capabilities of the WRF-Chem model in estimating the concentration of dust–A case study of a dust storm in Tehran. Environmental Sciences, 15(1), 115-126. (in Farsi)
  31. Nowruzi, A.A., & Shoaei, Z. (2018). Identification of areas with dust production potential in the southwestern watersheds of the Iran. Watershed Engineering and Management, 10(3), 398-409. (in Farsi)
  32. Nowrouzi, S., & Khademi.H. (2015). Spatial and temporal variation in dust deposition rate in Isfahan and its relationship with selected climatic Parameters. Water and Soil Science, 19(72), 149-162. (in Farsi)
  33. Rezaei Banafsheh, M., Sharifi, L., PirKhezryan, S.Gh., (2012). Estimation of dust using satellite images (case study: Kurdistan province), Natural Geography, 5(18), 13-22. (in Farsi)
  34. Rezazadeh, M., Irannejad, P., & Shao, Y. (2013). Dust emission simulation with the WRF-Chem model using new surface data in the Middle East region. Earth and Space Physics, 39(1), 191-212. (in Farsi)
  35. Shahid, M. Z., Chishtie, F., Bilal, M., & Shahid, I. (2021). WRF-Chem simulation for modeling seasonal variations and distributions of aerosol pollutants over the Middle East. Remote Sensing, 13(11), 2112.
  36. Sharafi, K., Khosravi, T., Moradi, M., & Pirsaheb, M. (2015). Air quality and variations in PM10 pollutant concentration in western Iran during a four-year period (2008–2011), Kermanshah-a case study. Engineering Science and Technology, 10(1), 47-56.
  37. Shaw, P. (2008). Aplication of aerosol speciation data as an insitu dust proxy for validation of the Dust Regional Atmospheric Model (DREAM). Atmospheric Environment, 42, 7912-7913.
  38. Stix, J., de-Moor, J.M., Rüdiger, J., Alan, A., Corrales, E., D'Arcy, F., Andres Diaz, J., & Liotta, M. (2018). Using drones and miniaturized instrumentation to study degassing at turrialba and masaya volcanoes, central America. Geophysical Research: Solid Earth,123(8), 6501-6520.
  39. Stockwell, W.R., Kirchner, F., Kuhn, M., & Seefeld, S. (1997). A new mechanism for regional Atmospheric chemistry modeling. Geophysical Research, 102(D22), 25847-2587.
  40. Tulabi nezhad, M., Hejazizadeh, Z., Zarei, Z., Amrai, B., (2018). Dust storm monitoring in the western hemisphere: a case study of dust storm June 16-19, 2015. Spatial Analysis of Environmental Hazards. 5(4), 107-124. (in Farsi)
  41. Wang, P., Cao, J., Tie, X., Wang, G., Li, G., Hu, T., Wu, Y., Xu, Y., Xu, G., Zhao, Y., Ding, W., Liu, H., Huang, R., & Zhan, CH. (2015). Impact of meteorological parameters and gaseous pollutants on PM2.5 and PM10 mass concentrations during 2010 in Xi’an, China. Aerosol and Air Quality Research, 15(5), 1844-1854.
  42. Yu, X., Wang, T., Liu, Ch., Pu, L. (2017). Numerical studies on a severe dust storm in East Asia using WRF-Chem. Atmospheric and Climate Sciences, 7(1), 92-116.
  43. Zeng, Y., Wang, M., Zhao, CH., Chen, S., Liu, Zh., Huang, X., & Gao, Y. (2020). WRF-Chem v3.9 simulations of the East Asian dust storm in May 2017: modeling sensitivities to dust emission and dry deposition schemes, Model Development, 13(4), 2125-2147.