تأثیر کاربری‌های مختلف اراضی بر ترسیب کربن و فرسایش خاک در منطقه جزینک سیستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد رشته بیابان زدایی، دانشکدۀ آب و خاک، دانشگاه زابل، زابل، ایران.

2 دانشیار دانشکدۀ آب و خاک، دانشگاه زابل، زابل، ایران.

3 دانشیار دانشکدۀ منابع طبیعی. دانشگاه گیلان، گیلان، ایران.

چکیده

هدف از انجام پژوهش حاضر، بررسی تأثیر کاربری‌­های مختلف جنگل، مرتع، نی‌زار و بایر بر میزان ترسیب کربن و فرسایش‌­پذیری خاک در منطقۀ جزینک واقع در شهرستان زهک، استان سیستان و ‌‌‌بلوچستان است. برای این منظور پس از ارزیابی میدانی انواع کاربری‌ها، نمونه‌هایی از عمق‌های 30- 0 و 30-60  سانتیمتری خاک در هر کاربری برداشت ‌شد. برخی ویژگی­‌ها شامل کربن آلی خاک، بافت، جرم مخصوص ظاهری، کربن ترسیب شده و شاخص پایداری خاک­دانه‌­ها (MWD) طبق روش­‌های استاندارد اندازه‌گیری شد. تجزیه و تحلیل داده‍‌­ها از طریق آنالیز یک طرفه  ANOVA در قالب طرح بلوک کاملاً تصادفی و مقایسه میانگین‌ها با استفاده از آزمون توکی در سطح اعتماد 95­% با استفاده از نرم‌افزار SPSS  انجام شد. نتایج نشان داد که مقدار جرم مخصوص ظاهری درکاربری نی‌زار در عمق­‌های مختلف به‌ترتیب0.992gr/cm3 و0.956gr/cm3 کمترین، و در بایر به‌ترتیب 1.59gr/cm3 و 1.61gr/cm3 بیشترین مقدار بوده است. ترسیب کربن در کاربری نی‌زار به‌ترتیب در عمق‌­های اول و دوم خاک 3234.02kg/ha  و 2455.32kg/ha بیشترین مقدار به­‌دست آمد. کمترین مقدار آن مربوط به اراضی بایر به ترتیب در عمق­‌های اول و دوم خاک 1967.37kg/ha و 987.65kg/ha می‌­باشد. پایداری خاک در بایر 0.342mm کمترین مقدار و در نی‌زار 1.67mm بیشترین مقدار را داشت. در پژوهش حاضر مشخص شد که هر چه مقدار کربن و ماده آلی خاک بیشتر و جرم مخصوص کمتر باشد، خاک دارای پایداری و مقاومت بیشتری نسبت به فرسایش است. در این منطقه کاربری­‌های نی‌زار و جنگل بیشترین سطح پایداری و ترسیب کربن را در بین کاربری­‌ها دارد. این یافته­‌ها می‌­تواند برای تصمیم‌­گیری و به کارگیری شیوه‌­های صحیح مدیریتی و برنامه­‌های بیابان­‌زدایی در مناطق خشک مشابه این منطقه، مفید باشد.

کلیدواژه‌ها

موضوعات


  1. Abiyat, M., Abiyat, M., & Abiyat, M. (2021). Investigation of land-use changes and their impacts on soil erosion in Baghmalek basin using artificial neural network and RUSLE model. Environmental Studies, 47(1), 89-110. (in Farsi)
  2. Ahmadi Iikhchi, A., Hajabbassi, M. A., & Jalalian, A. (2003). Effects of converting range to dry-farming land on runoff and soil loss and quality in Dorahan, Chaharmahal & Bakhtiari province. Water and Soil Science, 6(4), 103-115. (in Farsi)
  3. Ajami, M., Khormali, F., & Ayoubi, Sh. A. (2006). The effect of land use change and different geomorphic positions on different soil quality parameters, micromorphology and clay mineralogy in loess lands east of Golestan province, Aqsoo watershed. Master Thesis. University of Agricultural and Natural Resources Sciences, Faculty of Soil, Gorgan. (in Farsi)
  4. Amiraslani, F. (2003). Carbon sequestration in desert lands. Forest and Range, 62, 71-76. (in Farsi)
  5. Anindita, S., Sleutel, S., Vandenberghe, D., Grave, J. D., Vandenhende, V., & Finke, P. (2022).  Land use impacts on weathering, soil properties, and carbon storage in wet Andosols, Indonesia. Geoderma, 423(10), 963-977.
  6. Asgari, A. (2012). The effect of different land uses on carbon sequestration and some soil erodibility indices in the Incheh Boron Region. Master Thesis. University of Zabol, Faculty of Natural Resources, Zabol. (in Farsi)
  7. Batjes, N. H. (2006). Soil carbon stocks of Jordan and projected changes upon improved management of croplands. Geoderma, 132(3-4), 361–371.
  8. Black, C. A. (1986). Methods of soil analysis. Part 1.ASA.Madison, WI. 9, 545 – 566.
  9. Bolin, B., & Sukumar, R. (2000). Global perspective. In: Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., & Dokken, D.J. (Eds), Land use change, and forestry. Cambridge University Press, Cambridge, UK PP, 23 – 51.
  10. Brannstrom, C., Jepson, W., Filippi, A.M., Redo, D., Xu, Z., & Ganesh, S. (2008). Land change in the Brazilian Savann (Cerrado), 1986 – 2002: comparative analysis and implications for Land use policy. Land Use Policy, 25(4), 579 – 595.
  11. Celik, I. (2005). Land use effects on organic matter and physical properties of soil in a southern Mediterranean highland of turkey. Soil and Tillage Research, 83(2), 270-277.
  12. Cheng, C. M., Wang, R. S., & Jiang, J. S. (2007). Variation of soil fertility and carbon sequestration by planting Hevea brasiliensis in Hainan Island, China. Environmental Sciences, 19(3), 348 – 352.
  13. Chibsa, T., & Taa, A. (2009). Assessment of soil organic matter under four land use system: forestland, grassland, fallow land and cultivated land. World Applied Sciences, 6(9), 1231 – 1246.
  14. De – Neergaard, A., Porter, J. R., & Gorissen, A. (2002). Distribution of assimilated carbon in plants and rhizosphere soil of basket willow (Salix viminalis L.). Plant soil, 245(2), 307 – 314.
  15. Domzal, H., Horara, , Slowinska-Jarkiewicz, A., & Turski, R. (1993). The effect of agricultural use on the structure and physical properties of three soil types. Soil & Tillage Research, 27(4), 365-382.
  16. Duiker, W., Flangman, D. C., & Lal, R. (2001). Erodibility and infiltration characteristics of five major soils of South-West Spain. Catena, 45(2), 103-121.
  17. Elliott, E. T. (1986). Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50(3), 627 – 633.
  18. Elmholt, S., Schjonning. P., Mmunkholm, L. J., & Debosz, K. (2008). Soil management effects on aggregate stability and biological binding. Geoderma, 144(3), 455 – 467.
  19. Fitzsimmons, M. J., Pennock, D. , & Thorpe, J. (2004). Effects of deforestation on ecosystem carbon densities in central Saskatchewan, Canada. Forest Ecology and Management, 188(3), 349- 361.
  20. Forouzandeh, M., Heshmati, G.A., Ghanbarian, G., & Mesbah, S.H. (2008). Comparing carbon sequestration potential of three shrub species Heliantemum lippii, Dendrostellera lessertii and Artemisia sieberi (case study: Gareh Bygone, Fasa). Environmental Studies, 34(2), 65-72. (in Farsi)
  21. Haj Abbasi, M.A. (2008). Methods and guidelines for Assessing sustainable use of soil water resources in the Treopics. Ferdowsi University of Mashhad Publications. 103 pp. (in Farsi)
  22. Jaiyeoba, I. A. (2003). Changes in soil properties due to continuous cultivation in a Nigerian semiarid savannah. Soil and Tillage Research, 70(1), 91 – 98.
  23. Jordahl, J. L., & Karlen, D.L. (1993). Comparison of alternative farming system. III. Soil aggregate stability. American Journal of Alternative Agriculture, 8(1), 27 – 33.
  24. Karami, P., Heshmati, G., Soltani A., & Golchin, A. (2010). Effects of different managements (grazing, exclosure, harvesting) on production and plant composition of rangeland ecosystems in the western part of Iran (Case Study: Saral of Kurdistan). Rangeland, 4(2), 250-261. (in Farsi)
  25. Kay, B. D. 2000. Soil Structure, in: Sumner, E. M. (Ed), Handbook of soil science. CRC Press, Boca Raton London. New York, Washington, D. C., PP, 229-264.
  26. Kiani, F., Jalalian, A., Pashaei, A., & Khademi H. (2007). Effect Of deforestation, grazing exclusion and rangeland degradation on soil quality indices in loess-derived landforms of Golestan Province. Science and Technology of Agriculture and Natural Resources, 41(2), 453-463. (in Farsi)
  27. Klik, A. (2008). Institute for hydraulic and landeskulturelle wasserwitschaft, University for Bodenkulture, Veienna (Australia). Soil Conservation and soil prptection, PP, 321 – 815.
  28. Ketcheson, J. (1980). Long-range effects of intensive cultivation and monoculture on the quality of southern Ontario soils. Canadian journal of soil Science, 60(3), 403-410.
  29. Kumar, R., Pandey, Sh., & Pandy, A. (2006). Plant roots and carbon sequestration. General Science, 91(7), 885-890.
  30. Lal R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1), 1 – 22.
  31. Lemenih, M., & Itanna, F. (2003). Soil carbon stock and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma, 123(1-2), 177-188.
  32. Marques, M.J., Garcia–Munoz, S., Munoz- Organero, G., & Bienes, R. (2010). Soil conservation beneath grass cover in hillside vineyards under Mediterranean climatic conditions (Madrid, Spain). Land Degradation and Development, 21(2), 122-131.
  33. Martinez- Mena, M., Lopez, J., Almagro, M., Boix– Fayos, V., & Albaladejo, J. (2008). Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of South–East Spain. Soil and Tillage Research, 99(1), 119 – 129.
  34. Moradi, A., Sadeghipour, A., Nikoo, Sh., & Parvizi, Y. (2021). Effects of land use and soil characteristics on changes in soil Organic carbon (Case Study: Ala area, Semnan). Desert Management, 16(2), 125-136. (in Farsi)
  35. (2019). negative emissions technologies and reliable sequestration: a research agenda national academy of science, engineering and medicine. Washington, DC: The National Academies Press.
  36. Niknahad Gharmakher, H., & Maramaei, M. (2011). Effects Of land use changes on soil properties (case study: The Kechik Catchment). Soil Management and Sustainable Production, 1(2), 81-95. (in Farsi)
  37. Olsson, L., & Ardo, J. (2002). Soil carbon sequestration in degraded semiarid agro – ecosystems - prils and potential. Ambio, 31(6), 471 – 477.
  38. Petrosians, H., Nazari Samani, A. A., Daneh Kar, A., & Mashhadi, N. (2021). Predicting land use and land cover changes on sand dunes expansion using CA-Markov model (Case Study: Southeastern coastal desert of Iran). Desert Management, 9(1), 51-66. (in Farsi)
  39. Puget, P., & Lal, R. (2005). Soil organic carbon and nitrogen in a mollisol in Central Ohio as affected by tillage and land use. Soil and Tillage Research, 80(2), 201– 213.
  40. Qin, Z., Dunn, J.B., Kwon, H., Muller, S., &Wander, M. M. (2016). Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. GCB Bioenergy, 8(1), 66-80.
  41. Rasiah, V., & Kay, B. D. (1994). Characterizing changes in aggregate stability subsequent to introduction of forages. Soil Science Society of America Journal, 58(3), 935 – 942.
  42. Refahi, H.Gh. (2017). Water erosion and its control. University of Tehran Press, 672 pp.
  43. Rouhipour, H., Farzaneh, H., & Asadi H. (2019). The Effect Of aggregate stability indices on soil erodibility factors using rainfall simulator. Range and Desert Research, 11(3), 235-254. (in Farsi)
  44. Scheffe, H. (1959). The analysis of variance. Wiley, New York.
  45. Schuman, G. E., Ingram, L. J., Stahl, R., D. & Vance, G. F. (2005). Dynamics of long – term carbon sequestration on rangelanda in the western USA in: XX International Grassland Congres, eds. OMara, F.P., Wilkins, R.J., t Mannetje, L., Lovett, D.K., Rogers, P.A.M., & Boland, T.M. 590. Biodiversity - global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
  46. Singh, G., Bala, N., Chaudhuri, K.K., & Meena, R.L. (2003). Carbon sequestration potential of common access resources in arid and semi-arid regions of northwestern India. Indian Forester, 129(7), 859- 864.
  47. Six, J., Elliott, E. T., & Paustian, K. (2000). Soil structure and soil organic matter: II. A Normalized stability index and the effect of mineralogy. Soil Science Society of America, 64(3), 1042-1049.
  48. Smith, P, (2004). Soils as carbon sinks, the global context. Soil Use and Management, 20 (2), 212 – 218.
  49. Spohn, M., & Giani, L. (2011). Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biology & Biochemistry, 43(5), 1081-1088.
  50. Stavi, I., Ungar, E.D., Laveec, H., & Sarah, P. (2011). Soil aggregate fraction 1–5 mm: An indicator for soil quality in rangelands. Arid Environments, 75(11), 1050 – 1055.
  51. Surya Prabha, A. C., Senthivelu, M., & Paramasivam, A. (2019). Carbon sequestration potential in different land uses: A review. Environmental Research and Development, 15(9), 727-736.
  52. Tavakoli, M. (2015). Analysis the tourism situation of sample villages in the direction of sustainable development (Case study of Jazink village in Sistan region. Proceeding of International Conference on Geography and Sustainable Development, 74-75. (in Farsi)
  53. Tejada, M., & Gonzalez, J. L. (2008). Influence of two organic amendments on the soil physical properties, soil losses, sediments and runoff water quality. Geoderma, 145(3-4), 325 – 334.
  54. Thomas R.J., (2008). Opportunities to reduce the vulnerability of dryland farmers in central and west Asia and north Africa to climate change. Agriculture, Ecosystems and Environment, 126(1), 36–45.
  55. Toru, T., & Kibret, K. (2019). Carbon stock under major land use/land cover types of Hades sub-watershed, eastern Ethiopia. Carbon Balance and Management, 14(7), 1-14.
  56. Varamesh S., Hosseini S.M., Abdi, N.A., & Akbarinia, M. (2010). Increment Of soil carbon sequestration due to forestation and its relation with some physical and chemical factors of soil. Forest, 2 (1), 25-35. (in Farsi)
  57. Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-370.
  58. Whalen, J.K. Walter, D, Dormar, W., & Dormar, J. F. (2003) Soil carbon, nitrogen and phosphorus in modified rangeland communities. Range Management, 56(6), 665-672.
  59. Wischmeier, W.H., & Mannering, J.V. (1965). Effect of organic matter content of the soil infiltration. Soil and Water Conservation, 20(4), 150-152.
  60. Xun, L., Feng - Min, L., D - Qian, L., & Guo-Jun, S. (2010). Soil organic carbon, carbon fractions and nutrients as affected by land use in semi-arid region of loess plateau of China. Pedosphere, 20(2), 146-152.
  61. Zhang, k., Li, S., Peng, W., & Yu, B. (2004). Erodibility of agricultural soils on the Loess Plateau of China. Soil & Tillage Research, 76(2), 157-165.
  62. Zolfaghari, F., Shahriari. A., Fakhireh, A., Rashki, A., Noori, S., & Khosravi, H. (2011). Assessment of desertification potential using IMDPA model in Sistan plain. Watershed Management Research, 91(3), 97 – 107. (in Farsi)