Review of Iran's Climatic Zoning Based On Some Climate Variables Investigating the Capability of Satellite-Based Biophysical Indexes of Energy Balance Components and Evapotranspiration in Evaluating Soil Moisture Changes

Document Type : Original Article

Authors

1 Ph.D. Candidate, Combating Desertification, Faculty of Natural Resources and Eremology, Yazd University, Yazd, Iran.

2 Assistant Professor of Department of Arid Lands and Desert Management, Faculty of Natural Resources and Eremology, Yazd University, Yazd, Iran.

Abstract

Surface soil moisture is one of the important variables in hydrological processes that affects the exchange of water and energy flow in relationship between land surface and atmosphere. Precise assessment of spatial and temporal variations in soil moisture is crucial for numerous environmental studies. Recent technological advances in satellite remote sensing indicates that the soil moisture can be measured using remote sensing methods. The purpose of this study is to estimate biophysical indices and evapotranspiration using SEBAL algorithm and to present soil moisture index using principal component regression method in the east of Bakhtegan Lake, Fars province. For this purpose, five Landsat 8 satellite images for March, April, May and June 2017 were selected and initially corrected. Meteorological data of Marvdasht synoptic station was used to execute SEBAL algorithm. Soil moisture index was modeled using biophysical indices such as albedo, net radiation flux, soil heat flux, evapotranspiration, and etc. by using principal component regression. TVDI index was used to validate the model. The coefficient of determination (R2) and F index are equal to 0.966 and 1651581.9, respectively, which indicates the high efficiency of the model to obtain soil moisture index for each pixel in different areas with different conditions and diverse vegetation. In addition to temperature and vegetation, other biophysical indicates of the region that affect the soil moisture should be taken into account.

Keywords


  1. Ahmad, M.D., Biggs, T., Turral, H. & Scott, C.A. (2006). Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India. Water Science and Technology53(10), 83-90.
  2. Allen, R .,Tasumi, M., Trezza, R. & Bastiaanssen, W. (2002). SEBAL (Surface Energy Balance Algorithms for Land). Advanced Training and Users Manual.
  3. Allen, R.G., Tasumi, M., Morse, A. & Trezza, R. (2005). A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation and Drainage systems19(3-4), 251-268.
  4. Allen, R.G., Tasumi, M. & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering133(4),380-394.
  5. Bastiaanssen, W., Noordman, E.,  Pelgrum, H., Davids, G., Thoreson, B.  & Allen, R. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of irrigation and drainage engineering131(1), 85-93.
  6. Bastiaanssen, W.G. & Bos, M. (1999). Irrigation performance indicators based on remotely sensed data: a review of literature. Irrigation and drainage systems13(4), 291-311.
  7. Bastiaanssen, W.G., Pelgrum, H. Wang, J., Ma, Y., Moreno, J., Roerink, G. & Van der Wal, T. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology212, 198-212.
  8. Bastiaanssen, W.G., Ahmad, M. D. & Chemin, Y. (2002). Satellite surveillance of evaporative depletion across the Indus Basin. Water Resources Research38(12), 9-1-9-9.
  9. Bastiaanssen, W.G. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of hydrology229(1-2), 87-100.
  10. Batra, N., Islam, S.,Venturini, V., Bisht, G. & Jiang, L. (2006). Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains. Remote Sensing of Environment103(1), 1-15.
  11. Chemin, Y. & Alexandridis, T. (2001). Improving spatial resolution of ET seasonal for irrigated rice in Zhanghe, China. Paper presented at the 22nd Asian Conference on Remote Sensing, 5(1), 3-11.
  12. Di Bella, C., Rebella, C. & Paruelo, J.M. (2000). Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina. International Journal of Remote Sensing21(4), 791-797.
  13. Du, J., Song, K., Wang, Z., Zhang, B. & Liu, D. (2013). Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China. Chinese geographical science,  23(1), 73-91.
  14. Fatras, C., Frappart, F., Mougin, E., Grippa, M. & Hiernaux, P. (2012). Estimating surface soil moisture over Sahel using ENVISAT radar altimetry. Remote sensing of environment1(23), 496-507.
  15. Gillies, R.R. & Carlson, T.N. (1995). Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology34(4), 745-756.
  16. Goetz, S. (1997). Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of remote sensing18(1), 71-94.
  17. Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O. & Van der Tol, C. (2012). Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sensing of Environment121, 261-274.
  18. Goward, S.N., Xue, Y. & Czajkowski, K.P.  (2002). Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote sensing of environment79(2-3), 225-242.
  19. Granger, R. (2010). A feedback Approach for the estimate of evapotranspiration using remotely-sensed data. in Second International Workshop on Application of Remote Sensing in Hydrology.
  20. Hafeez, M., Chemin, Y., Van De Giesen, N. & Bouman, B. (2002). Field evapotranspiration estimation in central luzon, philippines using different sensors: Landsat 7 etm+, terra modis and aster. in ISPRS/CIG conference JulyCiteseer.
  21. Han, Y., Wang, Y. & Zhao, Y. (2010). Estimating soil moisture conditions of the greater Changbai Mountains by land surface temperature and NDVI. IEEE Transactions on Geoscience and Remote Sensing48(6), 2509-2515.
  22. Holidi, H., Armanto, M.E., Damiri, N. & Putranto, D.A. (2019). Characteristics of Selected Peatland uses and Soil Moisture Based on TVDI. Journal of Ecological Engineering20(4), 194-200.
  23. Immerzeel, W., Gaur, A. & Zwart, S.J.  (2008). Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agricultural Water Management95(1), 11-24.
  24. Jabloun, M.d. & Sahli, A. (2008). Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia. Agricultural water management95(6), 707-715.
  25. Khanmohammadi, F., Homaee, M. & Noroozi, A.A. (2015). Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Soil and Water Resources Conservation4(2), 37-45. )in Farsi(
  26. Kustas, W.P. & Norman, J.M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology94(1), 13-29.
  27. Kustas, W.P., Choudhury, B.J., Moran, M.S., Reginato, R.J., Jackson, R.D., Gay, L.W. & Weaver, H.L. (1989). Determination of sensible heat flux over sparse canopy using thermal infrared data. Agricultural and Forest Meteorology, 44(3-4), 197-216.
  28. Lievens, H. & Verhoest, N.E. (2012). Spatial and temporal soil moisture estimation from RADARSAT-2 imagery over Flevoland, The Netherlands. Journal of hydrology456, 44-56.
  29. Lu, H., Koike, T., Yang, K., Hu, Z., Xu, X., Rasmy, M., Kuria, D. & Tamagawa, K. (2012). Improving land surface soil moisture and energy flux simulations over the Tibetan plateau by the assimilation of the microwave remote sensing data and the GCM output into a land surface model. International Journal of Applied Earth Observation and Geoinformation17, 43-54.
  30. Lunt, I., Hubbard, S. & Rubin, Y. (2005). Soil moisture content estimation using ground-penetrating radar reflection data. Journal of hydrology307(1-4), 254-269.
  31. Ma, Y.m., Menenti, M., Tsukamoto, O., Ishikawa, H., Wang, J.m. & Gao, Q.z. (2004). Remote sensing parameterization of regional land surface heat fluxes over arid area in northwestern China. Journal of arid environments57(2), 257-273.
  32. Mallick, K., Bhattacharya, B., Chaurasia, S., Dutta, S., Nigam, R., Mukherjee, J., Banerjee, S., Kar, G., Rao, V.  & Gadgil, A. (2007). Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India. International Journal of Remote Sensing28(10), 2091-2110.
  33. Mehrabi, m., Hamzeh, S., Alavipanah, S. K., Kiavarz, M. & Ziaee, R. (2019).  Estimating soil moisture using remotely sensed data and surface energy balance system. Watershed Engineering and Management11(3), 759-770. )in Farsi(
  34. Menard, S. )2002(. Applied logistic regression analysis, Sage.
  35. Menenti, M. & Choudhury, B. (1993). Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range. Exchange processes at the land surface for a range of space and time scales212, 561-568.
  36. Moosavi, V., Talebi, A., Mokhtari, M.H. & Hadian, M.R. (2016). Estimation of spatially enhanced soil moisture combining remote sensing and artificial intelligence approaches. International journal of remote sensing37(2), 5605-5631.
  37. Peters, A.J., Rundquist, D.C. & Wilhite, D.A. (1988). Satellite detection of the geographic core of the 1988 Nebraska drought. Agricultural and Forest Meteorology57(1-3), 35-47.
  38. Price, J.C. (1990). Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE transactions on Geoscience and Remote Sensing28(5), 940-948.
  39. Sandholt, I., Rasmussen, K. & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of environment79(2-3), 213-224.
  40. Sadeghzade Poode, R., Zare, M., Mokhtari, M.H. & Ghalibaf, M.A. (2015).  Assessment of Surface Energy Balance Algorithm for Land (SEBAL) model and biophysical parameters derived from remotely- sensed data in estimating of soil moisture in arid lands (Case study: Jarghoye, Isfahan). Desert Management3(6), 90-107. )in Farsi(
  41. Stisen, S., Sandholt, I. & Fensholt, R. (2004).  Meteosat Second Generation Data for Assessment of Surface Moisture Status. in Proceedings of the Second MSG RAO Workshop. Salzburg, Austria.
  42. Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and earth system sciences6(1), 85-100.
  43. Tasumi, M., Trezza, R., Allen, R. & Wright, J. (2003). US Validation Tests on the SEBAL Model for. Evapotranspiration via Satellite.
  44. Tasumi, M. (2000). Application of the SEBAL methodology for estimating consumptive use of water and stream flow depletion in the Bear River Basin of Idaho through remote sensing. Appendix C: a step-by-step guide to running SEBAL.
  45. Wang, X., Xie, H., Guan, H. & Zhou X. (2007) Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. Journal of hydrology340(1-2), 12-24.
  46. Western, A.W. & Grayson, R.B. (1998). The Tarrawarra data set: Soil moisture patterns, soil characteristics, and hydrological flux measurements. Water Resources Research34(10), 2765-2768.
  47. Yin, Z., Lei, T., Yan, Q., Chen, Z. & Dong, Y. (2013). A near-infrared reflectance sensor for soil surface moisture measurement. Computers and electronics in agriculture99(1), 101-107.