Effect of Selenium and Silicon Foliar Spraying on Some Physiological Traits and Yield Parameters of Origanum vulgare L. under Drought Stress

Document Type : Original Article

Authors

1 Ph.D. Candidate, Combating Desertification, Department of Arid Land and Desert Management, Faculty of Natural Resources & Desert Studies, Yazd University, Yazd, Iran.

2 Associate professor, Department of Arid Land and Desert Management, Faculty of Natural Resources & Desert Studies, Yazd University, Yazd, Iran.

3 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran.

Abstract

Selenium (Se) and silicon (Si) are identified to affect plant physiological attributes and yield parameters. Se and Si’s effective roles in reducing various environmental stresses in plant of Origanum vulgare L. are unknown and need to be investigated. This study aimed to examine the role of Si and Se application on O. vulgare under drought stress and the effect of these two elements on physiological traits and yield parameters of O. vulgare. The impact of the foliar spraying of Se and Si under drought stress conditions was studied through a split factorial experiment with three replications in greenhouse conditions at the Yazd University. Drought, as the first factor in three stress levels of 30, 70 and 100% of field capacity, and nutrient factors including Se in three levels of control, 15 and 30 mg/l, and Si in three levels of control, 150 and 300 mg/l were sprayed. Foliar spraying of Se 30 mg/l had a significant effect on the increase in proline, soluble sugar, chlorophyll, carotenoids, phenolics compounds, and fresh and dry shoot weights. The foliar spraying of Si 150 mg/l had a significant effect on the increase in proline compared to the control traits. The change in foliar spray quantity of Si has no significant impact on changes in yield parameters. The combined foliar spraying of Se and Si to reduce the effects of drought stress has been more effective than applying just one of these elements in improving the physiological attributes of O. vulgare. The solution of 30 mg/l Se and 15 mg/l Si has a higher yield under drought stress conditions of 70% of the field capacity.

Keywords


  1. Alachew, E., Muhammad, H., Azamal, H., Samuel, S., & Kasim, M. (2016). Differential sensitivity of Pisum sativum cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. Agronomy, 15(2), 45-57.
  2. Aligiannis, N., Kalpoutzakis, E., Mitaku, S., & Chinou, I. B. (2001). Composition and antimicrobial activity of the essential oils of two Origanum Agricultural and Food Chemistry, 49(9), 4168-4170.
  3. Amerian, M., Zebarjadi, A., & Mehrabi, J. A. (2020). Effect of Different Concentrations of Selenium on Some Morphological and Physiological Characteristics of Dragons Head (Lallemantia iberica) under Different Irrigation Regimes. Water Research in Agriculture, 34.3(3), 415-431. (in Farsi)
  4. Azizi, A., Yan, F., & Honermeier, B. (2009). Herbage yield, essential oil content and composition of three oregano (Origanum vulgare) populations as affected by soil moisture regimes and nitrogen supply. Industrial Crops and Products, 29(2-3), 554-561.
  5. Babaee, K., Amini Dehaghi, M., Modares Sanavi, S. A. M., & Jabbari, R. (2010). Water deficit effect on morphology, prolin content and thymol percentage of Thyme (Thymus vulgaris). Medicinal and Aromatic Plants, 26(2), 239-251. (in Farsi)
  6. Babakhanlu, P., Hoseynzadeh, A., Mirzaei nodushan, H., Hajnajari, H., Jalili, A., & Masumi, A. A. (1999). Medicinal and Aromatic Plants Research (Vol. 1): Research Institute of Forest and Rangeland. (in Farsi)
  7. Bahreyninezhad, B., Razmju, J., & Jaber Alansav, Z. (2013). Evaluation of the effects of moisture stress on photosynthetic pigments in two species of Thymus carmanicus (Thymus carmanicus) and T. daenensis thyme T. Daenensis. Paper presented at the The first regional conference on medicinal plants in the north of the country, Golestan Agricultural and Natural Resources Research Center, Gorgan. (in Farsi)
  8. Balibrea, M. E., Parra, M., Bolarín, M. C., & Pérez-Alfocea, F. (1999). PEG-osmotic treatment in tomato seedlings induces salt-adaptation in adult plants. Functional Plant Biology, 26(8), 781-786.
  9. Barazandeh, M. M. (2001). Essential Oil Composition of Origanum majorana Medicinal and Aromatic Plants, 10(1), 65-74. (in Farsi)
  10. Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
  11. Blum, A. (2010). Plant breeding for water-limited environments, Springer Science & Business Media.
  12. Cartes, P., Gianfreda, L., & Mora, M. (2005). Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant and Soil, 276(1), 359-367.
  13. Chen, D., Cao, B., Wang, S., Liu, P., Deng, X., Yin, L., & Zhang, S. (2016). Silicon moderated the K deficiency by improving the plantwater status in sorghum. Sci Rep 6: 22882.
  14. Djanaguiraman, M., Devi, D. D., Shanker, A. K., Sheeba, J. A., & Bangarusamy, U. (2005). Selenium–an antioxidative protectant in soybean during senescence. Plant and Soil, 272(1), 77-86.
  15. Egert, M., & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany, 48(1), 43-49.
  16. Epstein, E. (1999). SILICON. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 641-664.
  17. Fales, F. W. (1951). The assimilation and degradation of carbohydrates by yeast cells. Biological Chemistry, 193(1), 113-124.
  18. Farhadpurasli Ardeh, M., & Bakhshi, S. (2011). The effect of environmental stresses on the production of secondary metabolites in medicinal plants. Paper presented at the National Conference on New Achievements in Agriculture, Islamic Azad University. Ghods Branch. Tehran. (in Farsi)
  19. Filek, M., Łabanowska, M., Kościelniak, J., Biesaga‐Kościelniak, J., Kurdziel, M., Szarejko, I., & Hartikainen, H. (2015). Characterization of barley leaf tolerance to drought stress by chlorophyll fluorescence and electron paramagnetic resonance studies. Agronomy and Crop science, 201(3), 228-240.
  20. Fletcher, R. S., & Kott, L. S. (1999). Phenolics and cold tolerance of Brassica napus. Paper presented at the Proceedings of the 10th International Rapeseed Congress.
  21. Fu, L.-H., Wang, X.-F., Eyal, Y., She, Y.-M., Donald, L. J., Standing, K. G., & Ben-Hayyim, G. (2002). A selenoprotein in the plant kingdom: mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. Biological Chemistry, 277(29), 25983-25991.
  22. Ghahraman, A. (1994). Iranian cormophytes (plant systematic) (Vol. third volume). University Publishing Center Publications,Tehran. (in Farsi)
  23. Grevsen, K., Frette, X. C., & Christensen, L. P. (2009). Content and Composition of Volatile Terpenes, Flavonoids and Phenolic Acids in Greek Oregano (Origanum vulgare ssp hirtum) at different Development Stages during Cultivation in Cool Temperate Climate. European Journal of Horticultural Science, 74(5), 193-203.
  24. Guerriero, G., Hausman, J.-F., & Legay, S. (2016). Silicon and the plant extracellular matrix. Frontiers in Plant Science, 7, 463.
  25. Hartikainen, H., Xue, T., & Piironen, V. (2000). Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil, 225(1), 193-200.
  26. Hawrylak-Nowak, B., Matraszek, R., & Szymańska, M. (2010). Selenium modifies the effect of short-term chilling stress on cucumber plants. Biological trace element research, 138(1), 307-315.
  27. Healthcare, T. (2004). PDR for herbal medicines: Montvale: Thomson Healthcare.
  28. Hodson, M. J., & Evans, D. E. (1995). Aluminium/silicon interactions in higher plants. Experimental Botany, 46(2), 161-171.
  29. Hopper, J. L., & Parker, D. R. (1999). Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant and Soil, 210(2), 199-207.
  30. Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Plant Nutrition and Soil Science, 168(4), 541-549.
  31. Inze, D., & Van Montagu, M. (1995). Oxidative stress in plants. Current opinion in Biotechnology, 6(2), 153-158.
  32. Jamzad, Z. (2012). Flora Of Iran, Research Institute of Forests and Rangelands. (in Farsi)
  33. Jithesh, M., Prashanth, S., Sivaprakash, K., & Parida, A. K. (2006). Antioxidative response mechanisms in halophytes: their role in stress defence. Genetics, 85(3), 237.
  34. Kafi, M., & Mahdavi damghani, A. (2000). Mechanisms of plant resistance to environmental stresses (Vol. Fifth Edition), Mashhad Ferdowsi University. (in Farsi)
  35. Karmollachaab, A., Gharineg, M. H., Bakhshandeh, A., Moradi Telvat, M., & Fathi, G. (2013). Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum) under drought stress condition. Agroecology, 5(4), 430-442. (in Farsi)
  36. Khalid, K. A. (2006). Influence of water stress on growth, essential oil, and chemical composition of herbs [Ocimum sp.]. International Agrophysics, 20(4), 289-296.
  37. Lan, C.-Y., Lin, K.-H., Huang, W.-D., & Chen, C.-C. (2019). Protective Effects of Selenium on Wheat Seedlings under Salt Stress. Agronomy, 9(6), 272.
  38. Liang, Y., Chen, Q., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare). Plant Physiology, 160(10), 1157-1164.
  39. Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382.
  40. Liu, H., Wang, X., Wang, D., Zou, Z., & Liang, Z. (2011). Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Industrial Crops and Products, 33(1), 84-88.
  41. Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Applied Research on Medicinal and Aromatic Plants, 100255.
  42. Malik, J. A., Goel, S., Kaur, N., Sharma, S., Singh, I., & Nayyar, H. (2012). Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany, 77, 242-248.
  43. Millar, C. E., Turk, L. M., & Foth, H. D. (1958). Fundamentals of soil science. Soil Science, 86(3), 168.
  44. Mozaffarian, V. (1966). A Dictionary of Iranian Plant Names: Latin - English - Persian: Farhang Mo'aser. (in Farsi)
  45. Nourzad, S., Ahmadian, A., & Moghaddam, M. (2015). Proline, Total Chlorophyll, Carbohydrate Amount and Nutrients Uptake in Coriander (Coriandrum Sativum) under Drought Stress and Fertilizers Application. Field Crops Research, 13(1), 131-139. (in Farsi)
  46. Rahimizadeh, M., Habibi, D., Madani, H., Mohammadi, G. N., Mehraban, A., & Sabet, A. M. (2007). The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annuus ) under drought stress. Helia, 30(47), 167-174. (in Farsi)
  47. Rayman, M. P. (2002). The argument for increasing selenium intake. Proceedings of the nutrition Society, 61(2), 203-215.
  48. Razavizadeh, R., Shafeghat, M., & Najafi, S. (2014). Effect of water deficit on morphological and physiological parameters of Carum copticum. Plant Biology, 6(22), 25-38. (in Farsi)
  49. Said-Al Ahl, H., & Hussein, M. (2010). Effect of water stress and potassium humate on the productivity of oregano plant using saline and fresh water irrigation. Ozean Journal of Applied Sciences, 3(1), 125-141.
  50. Sajedi, N. A., Ardakani, M. R., Madani, H., Naderi, A., & Miransari, M. (2011). The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays) under drought stress. Physiology and Molecular Biology of Plants, 17(3), 215-222. (in Farsi)
  51. Salmani Nodoushan, M., Abedi, M., & Vakilli, M. (2013). Selenium and Human Health. The Journal of Shahid Sadoughi University of Medical Sciences, 21(1), 101-112. (in Farsi)
  52. Sattar, A., Cheema, M. A., Sher, A., Ijaz, M., Ul-Allah, S., Nawaz, A., . . . Ali, Q. (2019). Physiological and biochemical attributes of bread wheat (Triticum aestivum) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta Physiologiae Plantarum, 41(8), 146.
  53. Schutz, M., & Fangmeier, A. (2001). Growth and yield responses of spring wheat (Triticum aestivum cv. Minaret) to elevated CO2 and water limitation. Environmental Pollution, 114(2), 187-194.
  54. Seppanen, M., Turakainen, M., & Hartikainen, H. (2003). Selenium effects on oxidative stress in potato. Plant Science, 165(2), 311-319.
  55. Shamsai, A. A., Aran, M., & Fakheri, B. (2021). The effect of foliar application of selenium on physiological and biochemical characteristics of rosemary under drought stress. Journal of Crop Science Research in Arid Regions, 2(2), 127-139. (in Farsi)
  56. Tas, S., & Tas, B. (2007). Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. Agriculture Science, 3, 178-183.
  57. Trelease, S. F., & Trelease, H. M. (1938). Selenium as a stimulating and possibly essential element for indicator plants. American Journal of Botany, 372-380.
  58. Wang, Z., & Huang, B. (2004). Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop science, 44(5), 1729-1736.
  59. Whanger, P. (2002). Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition, 21(3), 223-232.
  60. Xue, T., Hartikainen, H., & Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237(1), 55-61.
  61. Yao, X., Chu, J., Cai, K., Liu, L., Shi, J., & Geng, W. (2011). Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biological trace element research, 143(1), 507-517.
  62. Zargari, A. (1993). Iranian Medicinal Plants: University of Tehran. (in Farsi)