Investigation of L Band PALSAR Synthetic Aperture Radar (SAR) Data in Land Cover Mapping

Document Type : Original Article

Authors

Assistant Professor, Department of Environment., Faculty of Natural Resources, University of Zabol, Zabol, Iran.

Abstract

Mapping of wetlands using remote sensing has faced challenges due to different land cover classes and similar reflectance across land cover classes. Synthetic aperture radar (SAR) data have a special ability to detect phenomena because of their penetration capacity, as well as their independence from time and weather conditionsIn this study, radar data were used to map the land cover of Hamoun wetlands in both wet and dry conditions. For this purpose, L-band capacity has been used to investigate land cover classes. Statistical indicators were used for assessing the separation between land cover classesThe images were classified using the method of the support vector machine. The results of the present study show the capacity of the L-band to separate different land cover classes. The results of the accuracy assessment show an overall accuracy of over 80% in preparing the land cover map of the region. Furthermore, because of the penetration of the L-band, it is possible to detect water in the underlying layer of plants. The results of this study showed that the difference between the reflectance of vegetation that their smaller portion is below the water, and vegetation, most of which is above the water is detectable by the L-band. The difference between their backscatter is 6 dB in the HV and about 2 dB in the HH polarization, which indicates the capaity of the HV polarization to separate these two classes.

Keywords


  1. Ayehu, G., Tadesse, T., Gessesse, B., Yigrem, Y., & Melesse, A. (2020). Combined use of sentinel-1 sar and landsat sensors products for residual soil moisture retrieval over agricultural fields in the upper Blue Nile basin, Ethiopia.Sensors20(11), 3282.‏
  2. Arnesen, A.S., Silva, T.S., Hess, L.L., Novo, E.M., Rudorff,M., Chapman, B.D. & McDonald, K.C. (2013). Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sensing of Environment, 130, 51–61.
  3. Baghdadi, N., Bernier, P., Gauthier, R., & Neeson, I. (2001). Evaluation of C-band sar data for wetlands mapping. International Journal of Remote Sensing, 22, 71–88.
  4. Banks, S., White, L., Behnamian, A., Chen, Z., Montpetit, B., Brisco, B., & Duffe, J. (2019). Wetland classification with multi-angle/temporal SAR using random forests. Remote Sensing11(670), 1-28.
  5. Baghdadi, N., Cresson., R, El Hajj., M., Ludwig, R., & La Jeunesse, I. (2012). Estimation of soil parameters over bare agriculture areas from c-band polarimetric SAR data using neural networks. Hydrology and Earth System Sciences, 16, 1608–1621.
  6. Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., & Hubert-Moy, L. (2015). TerraSAR-X Dual-pol time-series for mapping of wetland vegetation. ISPRS Photogrammetry and Remote Sensing,107, 90–98.
  7. Bourgeau-Chavez, L.L., Kasischke, E.S., Brunzel, S.M., Mudd, J.P., Smith, K.B., & Frick, L. (2001). Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems. Remote Sensing, 22, 3665–3668.
  8. Bousbih, S., Zribi, M., Pelletier, C., Gorrab, A., LiliChabaane, Z., Baghdadi, N., & Mougenot, B. (2019). Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing,11(13), 1-20.
  9. Corcione, V., Nunziata, F., Mascolo, L., & Migliaccio, M. (2016). A Study of the use of COSMO-SkyMed SAR Ping Pong polarimetric mode for rice growth monitoring. Remote Sensing, 37(3), 633–647.
  10. Dabboor, M., Howell, S., Shokr, M., & Yackel, J. (2014). The Jeffries–Matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data. Remote Sensing35(19), 6859-6873.‏
  11. Dabrowska-Zielinskam, K., Budzynska, M., Tomaszewska, M., Bartold, M., Gatkowska, M., Malek, I., & Napiorkowska, M. (2014). Monitoring wetlands ecosystems using ALOS PALSAR L-Band, HV supplemented by optical data: A case study of Biebrza wetlands in Northeast Poland. Remote Sensing, 6,1605–1633.
  12. El Hajj, M., Baghdadi, N., Belaud, G., Zribi, M., Cheviron, B., Courault, D., & Charron, F. (2014). Irrigated grassland monitoring using a time series of terraSAR-X and COSMO-skyMed X-Band SAR data. Remote Sensing, 6(10), 10002–10032.
  13. K, M., Tajaddod, M., Ravanbakhsh, M., & Jamalzad.F, F. (2021). Vegetation classification based on wetland index using object-based classification of satellite images. RS and GIS for Natural Resources, 12(3), 1-17. (in Farsi)
  14. Heydarian, P., Rangzan, K., Maleki, S., & Taghizadeh, A. (2014). Land use change detection using post classification comparison LandSat satellite images (Case study: land of Tehran). RS and GIS for Natural Resources, 4(4), 1-10. (in Farsi)
  15. Huang, H., Roy, D.P., Boschetti, L., Zhang, H.K., Yan, L., Kumar, S.S., & Li, J. (2016). Separability analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for burned area discrimination. Remote Sensing8(10), 1-18.
  16. Hidayat, H., Hoekman, D.H, Vissers, M., Hoitink, A., & Pfister, L. (2012). Flood occurence mapping of the middle Mahakam low land area using satelite Hydrology and Earth System Sciences,16,1805–1816.
  17. Koch, M., Schmid, T., Reyes, M., & Gumuzzio, J. (2012). evaluating full polarimetric C- and L-Band data for mapping wetland conditions in a semi-arid environment in central Spain. Selected Topics in Applied Earth Observations and Remote Sensing, 5, 33–44.
  18. Kiage, L.M., Walker, N.D., Balasubramanian, S., Babin, A., & Barras, J. (2005). Applications of radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana. Remote Sensing, 26, 5359–5380.
  19. Lang, M.W, Townsend, P.A., & Kasischke, E.S. (2008). Influence of incidence angle on detecting flooded forests using C-HH synthetic aperture radar data. Remote Sensing of Environment,112(10), 3898–3907.
  20. Maleki, S., Soffianian, A.R., Koupaei, S.S., Pourmanafi, S., & Saatchi, S. (2018). Wetland restoration prioritizing, a tool to reduce negative effects of drought; An application of multicriteria-spatial decision support system (MC-SDSS). Ecological Engineering,112, 132-139.
  21. Maleki, S., Soffianian, A.R., Koupaei, S.S., Saatchi, S., Pourmanafi, S., & Sheikholeslam, F. (2016). Habitat mapping as a tool for water birds’ conservation planning in an arid zone wetland: the case study Hamoun wetland. Ecological Engineering, 95, 594-603.
  22. Maleki, S., Baghdadi, N., & Rahdari, V. (2020). Which water bird groups need greater habitat conservation measures in a wetland ecosystem? Ecological Engineering143,1-10.
  23. Maleki, S., Baghdadi, N., Soffianian, A., El Hajj, M., & Rahdari, V. (2020). Analysis of multi-frequency and multi-polarization SAR data for wetland mapping in Hamoun-e-Hirmand wetland. Remote Sensing41(6), 2277-2302.‏
  24. Martinisro, S., & Rieke, C. (2015). Backscatter analysis using multi-temporal and multi-frequency SAR data in the context of flood mapping at river Saale, Germany. Remote Sensing, 7, 32-52.
  25. Marti-Cardona, B., Lopez-Martinez, C., Dolz-Ripolles, J., & Bladè-Castellet, E. (2010). A SAR polarimetric, multi-incidence angle and multitemporal characterization of Donana wetlands for flood extent monitoring. Remote Sensing of Environment,114, 2802–2815.
  26. Morandeira, NS., Grings, F., Facchinetti, C., & Kandus, P. (2016). Mapping plant functional types in floodplain wetlands: an analysis of C-band polarimetric SAR data from RADARSAT-2. Remote Sensing8(3), 1-17.
  27. Mitsch, W.J., & Gosselink, J.G. (2007). Wetlands. Hoboken, John Wiley & Sons.
  28. Magagi, R., Bernier, M., & Ung, C.H. (2002). Quantitative analysis of radarsat SARdata over a sparse forest canopy. IEEE Transactions on Geoscience and Remote Sensing, 40, 1301−1313.
  29. Novo, E.M., Costa, M.P.F., Mantovani, J.E., & Lima, L.B.T. (2002). Relationship between Macrophyte Stand Variables and Radar Backscatter at L and C Band, Tucuruí reservoir, Brazil. Remote Sensing, 23, 1241–1260.
  30. Pal, M. (2005). Random forest classifier for remote sensing classification. Remote Sensing, 26, 217-222.
  31. Pham, T., Yoshino, K., & Kaida, N. (2017). Monitoring mangrove forest changes in cat ba biosphere reserve using ALOS PALSAR imagery and a GIS-based support vector machine algorithm. In International Conference on Geo-Spatial Technologies and Earth Resources, Springer, Cham.‏
  32. Pelletier, C., Valero, S., Inglada, J., Champion, N., & Dedieu, G. (2016). Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187,156-168.
  33. (2016). The list of wetlands of international importance. Ramsar.
  34. Reschke, J., Bartsch, A., Schlaffer, S., & Schepaschenko, D. (2012). Capability of C-Band SAR for operational wetland monitoring at high latitudes. Remote Sensing, 4, 2923–2943.
  35. Santoro, M., Pantze, A., Fransson, J.E., Dahlgren, J., & Persson, A. (2012). Nation-wide clear-cut mapping in Sweden using ALOS PALSAR strip images. Remote Sensing, 4,1693–1715.
  36. Sand, M., & Rieke, S. (2015). Backscatter analysis using multi-temporal and multi-frequency SAR data in the context of flood mapping at river Saale. Germany. Remote Sensing, 7, 7732–7752.
  37. Shamohammadi, Z., & Maleki, S. (2011). The Life of Human. Jahad Daneshgahi, Iran (in Farsi).
  38. Shen, G., Liao, J., Guo, H., & Liu, J. (2015(. Poyang Lake wetland vegetation biomass inversion using polarimetric RADARSAT-2 synthetic aperture radar data. Applied Remote Sensing, 9, 451-455.
  39. Taft, O.W., Haig, S.M., & Kiilsgaard, C. (2003). Use of radar remote sensing (RADARSAT) to map winter wetland habitat for shorebirds in an agricultural landscape. Environment Management, 33, 750-763.
  40. Touzi, R., Deschamp, B., & Rother, G. (2007). Wetland characterization using polarimetric RADARSAT-2 capability. Canadian Journal of Remote Sensing, 33(1), 56-67.
  41. Wilusz, D.C., Zaitchik, B.F., Anderson, M.C., Hain, C.R., Yilmaz, M.T., & Mladenova, I.E. (2017). Monthly flooded area classification using low resolution SAR imagery in the Sudd wetland from 2007 to 2011. Remote Sensing of Environment,194, 205–218.
  42. Widis, D.C., BenDor, T.K., & Deegan, M. (2015). Prioritizing wetland restoration sites: a review and application to a large- scale coastal restoration program. Ecological Restoration, 33, 358–377.
  43. Zhang, M., Li, Z., Tian, B., Zhou, J., & Tang, P. (2016). The Backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR. Applied Earth Observation and Geoinformation, 45, 1–13.