بررسی روند تغییرات گردوغبار در نیمه‌شرقی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت و کنترل بیابان، گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 استاد گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

3 دانشیار گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

4 پسادکتری گروه مهندسی بیوسیستم و علوم خاک، دانشگاه تنسی، ناکسویل، ایالات متحده آمریکا.

5 دانشیار گروه هواشناسی، مرکز تحقیقات هواشناسی و علوم جوی، تهران، ایران.

چکیده

در سال‌های اخیر، پدیده گردوغبار به یکی از مهمترین چالش‌های زیست‌ محیطی در سراسر جهان تبدیل شده است. کشور ایران با توجه به حاکم بودن اقلیم خشک و نیمه‌خشک بر آن، همیشه از تولید و گسترش مواد معلق در هوا به‌­ویژه گردوغبار آسیب دیده است. در پژوهش حاضر به ارزیابی روند و شدت تغییرات گردوغبار با استفاده از شاخص عمق نوری هواویز یا Aerosol Optical Depth در نیمه‌شرقی ایران پرداخته شد. بدین منظور ابتدا در سامانه گوگل ارث انجین از داده‌های AOD باند آبی با طول موج nm470 محصول MCD19A2 سنجنده مودیس در مقیاس زمانی روزانه میانگین‌گیری شد و داده‌های ماهانه AOD از ابتدای سال 1380 تا انتهای سال 1401 استخراج شد. در مرحله بعد ماه‌های دارای بیشترین میانگین AOD انتخاب شد و ارزیابی روند و شدت تغییرات گردوغبار بر روی داده­‌های این ماه‌ها انجام. به‌منظور ارزیابی روند تغییرات AOD از آزمون من‌کندال و همچنین برای ارزیابی شدت تغییرات آن از رگرسیون خطی استفاده شد. نتایج حاکی از آن است که بیشترین مقدار AOD در محدوده مورد بررسی در چهار ماه آوریل، می، ژوئن و جولای معادل با ماه‌های شمسی فروردین تا مرداد رخ داده است. همچنین نتایج تحلیل روند و شدت تغییرات AOD در ماه آوریل با احتمال بیش از 70% و با شدت زیاد و خیلی زیاد در بیشتر مناطق مورد بررسی در حال افزایش است. این درحالی است که شاخص مورد بررسی در ماه­های می، ژوئن و جولای به‌ترتیب در بخش قابل ملاحظه‌ای از نیمه‌غربی، نیمه‌شمالی و نیمه‌شرقی با شدت‌های مختلف با احتمال بیش از 70% در حال افزایش است. با توجه به نتایج پژوهش حاضر لازم است با مدیریت مناسب، عوامل مؤثر بر ایجاد گردوغبار در مناطقی که گردوغبار در حال افزایش است، روند تغییرات را کنترل یا کاهش داد.

کلیدواژه‌ها

موضوعات


  1. Alam, K., Qureshi, S. & Blaschke, T. (2011). Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmospheric environment, 45(27), 4641-4651. DOI: https://doi.org/10.1016/j.atmosenv.2011.05.055
  2. AlKheder, S., & AlKandari, A. (2020). The impact of dust on Kuwait International Airport operations: a case study. International journal of environmental science and technology, 17, 3467-3474. DOI: https://doi.org/10.1007/s13762-020-02710-3
  3. Arjmand, M., Rashki, A., & Sargazi, H. (2018). Monitoring of spatial and temporal variability of desert dust over the Hamoun e Jazmurian, Southeast of Iran based on the Satellite Data. Scientific- Research Quarterly of Geographical Data (SEPEHR), 27(106), 153-168. DOI: https://doi.org/10.22131/sepehr.2018.32339 [In Persian]
  4. Baghbanan, P., Ghavidel, Y., & Farajzadeh, M. (2020). Temporal long-term variations in the occurrence of dust storm days in Iran. Meteorology and Atmospheric Physics, 132, 885-898. DOI: https://doi.org/10.1007/s00703-020-00728-3
  5. Boloorani, A. D., Samany, N. N., Papi, R., & Soleimani, M. (2022). Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery. Catena, 209, 105795. DOI: https://doi.org/10.1016/j.catena.2021.105795
  6. Boroughani, M. (2022). Investigating the Trend of Changes and Correlation Between the Occurrence of Dust in Iran. Applied Soil Research, 10(1), 69-81.
  7. Choubin, B., Sajedi Hosseini, F., Rahmati, O., Mehdizadeh Youshanloei, M., & Jalali, M. (2022). Temporal and Spatial Variations of Dust Days in Western Azarbaijan Province, Determination of The Influencing Factors and Source of Events. Desert Management, 10(2), 71-86. DOI: https://doi.org/10.22034/jdmal.2022.550729.1378 [In Persian]
  8. Dadashi Roudbari, A. A., Ahmadi, M., & Shakiba, A. (2020). Evaluation Seasonal Trend of Iran Aerosol Index (AI) Based on Nimbus 7, Earth Probe and Aura Satellite Data. Physical Geography Research Quarterly, 52(1), 51-64. DOI: 22059/jphgr.2020.279630.1007366 [In Persian]
  9. Boloorani, A. D., Shorabeh, S. N., Samany, N. N., Mousivand, A., Kazemi, Y., Jaafarzadeh, N., ... & Rabiei, J. (2021). Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, IRAN. Environmental Pollution, 279, 116859. DOI: https://doi.org/10.1016/j.envpol.2021.116859
  10. Du, P., Huang, Z., Tang, S., Dong, Q., Bi, J., Yu, X., & Gu, Q. (2023). Long‐term Variation of Dust Devils in East Asia during 1959‐2021. Journal of Geophysical Research: Atmospheres, e2022JD038013. DOI: https://doi.org/10.1029/2022JD038013
  11. Ebrahimi-Khusfi, Z., Mirakbari, M., Ebrahimi-Khusfi, M., & Taghizadeh-Mehrjardi, R. (2020). Impacts of vegetation anomalies and agricultural drought on wind erosion over Iran from 2000 to 2018. Applied Geography, 125, 102330. DOI: https://doi.org/10.1016/j.apgeog.2020.102330
  12. Eck, T. F., Holben, B. N., Giles, D. M., Slutsker, I., Sinyuk, A., Schafer, J. S., ... & Aldrian, E. (2019). AERONET remotely sensed measurements and retrievals of biomass burning aerosol optical properties during the 2015 Indonesian burning season. Journal of Geophysical Research: Atmospheres, 124(8), 4722-4740. DOI: https://doi.org/10.1029/2018JD030182
  13. Elhacham, E., & Alpert, P. (2020). Potential new aerosol source (s) in the Middle East. Science of the Total Environment, 726, 137925. DOI: https://doi.org/10.1016/j.scitotenv.2020.137925
  14. Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and transport. Earth-Science Reviews, 79(1-2), 73-100. DOI: https://doi.org/10.1016/j.earscirev.2006.06.004.
  15. Eskandari Damaneh, H., Eskandari Damaneh, H., Sayadi, Z., & Khoorani, A. (2021). Evaluation of spatiotemporal changes and correclations of aerosol optical depth, NDVI and climatic data over Iran. DOI: https://doi.org/10.22092/ijrdr.2021.125252 [In Persian]
  16. Fallah-Ghalhari, G., Shakeri, F., & Dadashi-Roudbari, A. (2019). Impacts of climate changes on the maximum and minimum temperature in Iran. Theoretical and Applied Climatology, 138, 1539-1562. DOI: DOI: https://doi.org/10.1007/s00704-019-02906-9
  17. Francis, D., Fonseca, R., Nelli, N., Cuesta, J., Weston, M., Evan, A., & Temimi, M. (2020). The atmospheric drivers of the major Saharan dust storm in June 2020. Geophysical Research Letters, 47(24), e2020GL090102. DOI: https://doi.org/10.1029/2020GL090102
  18. Francis, D., Nelli, N., Fonseca, R., Weston, M., Flamant, C., & Cherif, C. (2022). The dust load and radiative impact associated with the June 2020 historical Saharan dust storm. Atmospheric Environment, 268, 118808. DOI: https://doi.org/10.1016/j.atmosenv.2021.118808
  19. Gholami, H., Mohammadifar, A., Bui, D. T., & Collins, A. L. (2020). Mapping wind erosion hazard with regression-based machine learning algorithms. Scientific Reports, 10(1), 20494. DOI: https://doi.org/10.1038/s41598-020-77567
  20. Hamzeh, N. H., Kaskaoutis, D. G., Rashki, A., & Mohammadpour, K. (2021). Long-term variability of dust events in southwestern Iran and its relationship with the drought. Atmosphere, 12(10), 1350. DOI: https://doi.org/10.3390/atmos12101350
  21. He, Q., Zhang, M., & Huang, B. (2016). Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015. Atmospheric Environment, 129, 79-90. DOI: https://doi.org/10.1016/j.atmosenv.2016.01.002
  22. Heydari Alamdarloo, E., Moradi, E., Abdolshahnejad, M., Fatahi, Y., Khosravi, H., & da Silva, A. M. (2021). Analyzing WSTP trend: a new method for global warming assessment. Environmental Monitoring and Assessment, 193, 1-15. DOI: https://doi.org/10.1007/s10661-021-09600-2
  23. Javan, S., Rahdar, S., Miri, M., Djahed, B., Kazemian, H., Fakhri, Y., ... & Taghavi, M. (2021). Modeling of the PM 10 pollutant health effects in a semi-arid area: a case study in Zabol, Iran. Modeling Earth Systems and Environment, 7, 455-463. DOI: https://doi.org/10.1007/s40808-020-00874-y
  24. Kandakji, T., Gill, T. E., & Lee, J. A. (2021). Drought and land use/land cover impact on dust sources in Southern Great Plains and Chihuahuan Desert of the US: Inferring anthropogenic effect. Science of the Total Environment, 755, 142461. DOI: https://doi.org/10.1016/j.scitotenv.2020.142461
  25. Kumar, M., Parmar, K. S., Kumar, D. B., Mhawish, A., Broday, D. M., Mall, R. K., & Banerjee, T. (2018). Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields. Atmospheric Environment, 180, 37-50. DOI: https://doi.org/10.1016/j.atmosenv.2018.02.027
  26. Li, J., Garshick, E., Al-Hemoud, A., Huang, S., & Koutrakis, P. (2020). Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Science of the total environment, 712, 136597. DOI: https://doi.org/10.1016/j.scitotenv.2020.136597
  27. Li, J., Ge, X., He, Q., & Abbas, A. (2021). Aerosol optical depth (AOD): spatial and temporal variations and association with meteorological covariates in Taklimakan desert, China. PeerJ, 9, e10542. DOI: https://doi.org/10.7717/peerj.10542
  28. Lyapustin, A., & Wang, Y. (2018). MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) data user’s guide. NASA: Greenbelt, MD, USA, 6(June), 1-19.
  29. Mao, K. B., Ma, Y., Xia, L., Chen, W. Y., Shen, X. Y., He, T. J., & Xu, T. R. (2014). Global aerosol change in the last decade: An analysis based on MODIS data. Atmospheric Environment, 94, 680-686. DOI: https://doi.org/10.1016/j.atmosenv.2014.04.053
  30. Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., Soleimani Sardoo, F., & Krakauer, N. Y. (2020). Joint modeling of severe dust storm events in arid and hyper arid regions based on copula theory: a case study in the Yazd province, Iran. Climate, 8(5), 64. DOI: https://doi.org/10.3390/cli8050064
  31. Middleton, N. (2019). Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences, 9(6), 261. DOI: https://doi.org/10.3390/geosciences9060261
  32. Mirakbari, M., Mesbahzadeh, T., Soleimani Sardoo, F., Miglietta, M. M., Krakauer, N. Y., & Alipour, N. (2020). Observed and projected trends of extreme precipitation and maximum temperature during 1992–2100 in Isfahan province, Iran using REMO model and copula theory. Natural Resource Modeling, 33(2), e12254. DOI: https://doi.org/10.1111/nrm.12254
  33. Miri, A., Dragovich, D., & Dong, Z. (2021). Wind flow and sediment flux profiles for vegetated surfaces in a wind tunnel and field-scale windbreak. Catena, 196, 104836. DOI: https://doi.org/10.1016/j.catena.2020.104836
  34. Namdari, S., Valizade, K. K., Rasuly, A. A., & Sari Sarraf, B. (2016). Spatio-temporal analysis of MODIS AOD over western part of Iran. Arabian Journal of Geosciences, 9, 1-11. DOI: https://doi.org/10.1007/s12517-015-2029-7
  35. Nouri, H., Faramarzi, M., Sadeghi, S. H., & Nasseri, S. (2019). Effects of regional vegetation cover degradation and climate change on dusty weather types. Environmental Earth Sciences, 78, 1-14. DOI: https://doi.org/10.1007/s12665-019-8763-5
  36. Pan, J., & Li, T. (2013). Extracting desertification from Landsat TM imagery based on spectral mixture analysis and Albedo-Vegetation feature space. Natural hazards, 68, 915-927. DOI: https://doi.org/10.1007/s11069-013-0665-3
  37. Qi, Y., Ge, J., & Huang, J. (2013). Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chinese science bulletin, 58, 2497-2506. DOI: https://doi.org/10.1007/s11434-013-5678-5
  38. Rashki, A., Kaskaoutis, D. G., Francois, P., Kosmopoulos, P. G., & Legrand, M. J. A. R. (2015). Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Research, 16, 35-48. DOI: https://doi.org/10.1016/j.aeolia.2011.02.001
  39. Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., ... & Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4), 181-204. DOI: https://doi.org/10.1016/j.aeolia.2011.02.001
  40. Soleimani, M., Argany, M., Papi, R., & Amiri, F. (2021). Satellite aerosol optical depth prediction using data mining of climate parameters. Physical Geography Research Quarterly, 53(3), 319-333. DOI: 22059/JPHGR.2021.318600.1007591 [In Persian]
  41. Tang, Z., Ma, J., Peng, H., Wang, S., & Wei, J. (2017). Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin. Advances in Space Research, 60(5), 969-979. DOI: https://doi.org/10.1016/j.asr.2017.05.033
  42. Yousefi, R., Wang, F., Ge, Q., & Shaheen, A. (2020). Long-term aerosol optical depth trend over Iran and identification of dominant aerosol types. Science of the Total Environment, 722, 137906. DOI: https://doi.org/10.1016/j.scitotenv.2020.137906
  43. Yousefi, R., Wang, F., Ge, Q., Lelieveld, J., & Shaheen, A. (2021). Aerosol trends during the dusty season over Iran. Remote Sensing, 13(6), 1045. DOI: https://doi.org/10.3390/rs13061045
  44. Yousefi, R., Wang, F., Ge, Q., Shaheen, A., & Kaskaoutis, D. G. (2023). Analysis of the winter AOD trends over Iran from 2000 to 2020 and associated meteorological effects. Remote Sensing, 15(4), 905. DOI: https://doi.org/10.3390/rs15040905
  45. Zangeneh, M. (2014). Climatological Analysis of Dust Storms in Iran. Applied Climatology, 1(1), 1-12. [In Persian]